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Abstract .  

This report presents the results of an investigation to use viscous computational fluid 
dynamic calculations to predict the flowfield and aerodynamic coefficients for a missile 
with grid fins in the supersonic flow regime. The calculations were made at Mach 2 and 
3 and several angles of attack. The results were validated by comparing the computed 
aerodynamic coefficients against wind tunnel experimental data. Good agreement was 
found between the computed and experimental axial force coefficients, with the 
difference between 4 and 8%. Reasonable agreement was found for the normal force 
coefficient, with a difference of 8-16%. The agreement between the computed and 
experimental pitching moment coefficient was not as good, with a difference of 16-27%. 
Good agreement was found for the location of the center of pressure, with a difference 
of 6-10%. The flowfield around the individual grid fins and the normal force on the fins 
showed characteristics similar to those found in an earlier study. 
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Abstract 

This paper presents the results of an investigation 
to use viscous computational fluid dynamic 
calculations to predict the flowfield and aerodynamic 
coefficients for a missile with grid fins in the 
supersonic flow regime. The calculations were made 
at Mach 2 and 3 and several angles of attack. The 
results were validated by comparing the computed 
aerodynamic coefficients against wind tunnel 
experimental data. Good agreement was found 
between the computed and experimental axial force 
coefficients, with the difference between 4 and 8%. 
Reasonable agreement was found for the normal force 
coefficient, with a difference of 8-16%. The 
agreement between the computed and experimental 
pitching moment coefficient was not as good, with a 
difference of 16-27%. Good agreement was found 
for the location of the center of pressure, with a 
difference of 6-10%. The flowfield around the 
individual grid fins and the normal force on the fins 
showed characteristics similar to those found in an 
earlier study. 

Introduction 

A grid fin, also known as a lattice control, is an 
unconventional lifting and control surface that 
consists of an outer frame supporting an inner grid of 
intersecting planar surfaces of small chord. Interest 
in grid fins is primarily in their potential use on 
highly maneuverable munitions due to their 
advantages over conventional planar controls at high 
angles of attack (a) and high Mach numbers. The fin 
design offers favorable lift characteristics at a high a 
and near-zero hinge moments, which allows the use 
of small and lightweight actuators.1"6 

The available data on grid fins are based on wind 
tunnel tests,3,4'7 free-flight aeroballistic range tests,8'9 

and numerical and theoretical investigations.10"15 The 
inviscid    computational    fluid    dynamic    (CFD) 
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computations of Sun and Khalid12 showed reasonable 
agreement of the fin normal force with experimental 
data from Washington and Miller.1 The inviscid 
computations of Chen et al.n concentrated on the 
flow in the region of grid fin while studying the effect 
of a fairing ahead of the base of the fin. These 
investigations were performed in the supersonic 
regime, at Mach numbers of 1.5 to 2.5. 

The viscous CFD computations of DeSpirito et 
a/.14,15 showed very good agreement with the 
aerodynamic coefficients measured in wind tunnel 
tests of a 13-caliber generic missile tested at the 
Defence Evaluation and Research Agency (DERA), 
United Kingdom.3'4 Simulations of this model were 
performed at Mach 2.5 and several angles of attack 
between 0° and 20°. The normal force and pitching 
moment coefficients were calculated to within 7% of 
the measured data. The axial force was within 11% at 
0° and within 6% at higher angles of attack. The 
normal force coefficients on the individual grid fins 
were calculated to within 10% of the measured data. 
A nonlinear variation of the normal force on the 
leeward grid fins with angle of attack was also 
captured. 

The capability to perform viscous simulations in 
the supersonic flow regime was demonstrated on the 
DERA 13-caliber generic missile.1415 The objective 
of the present study was to use that methodology to 
predict the aerodynamic coefficients on a 16-caliber 
missile shape representative of an air-to-air missile. 
The missile design was supplied by DERA, where 
research was aimed at investigating what advantages 
grid fins offered over conventional controls when 
employed on highly maneuverable air-to-air missiles.3 

Calculations were performed at two Mach numbers, 2 
and 3, and at several angles of attack at freestream 
conditions determined from wind tunnel tests 
performed concurrently at the Defence Research 
Establishment, Valcartier (DREV), Canada.7 This 
paper presents the results of these calculations and 
their validation against DREV wind tunnel data. 
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Approach 

Steady-state calculations were performed at two 
Mach numbers, 2 and 3, and at several angles of 
attack: 0°, 5°, 10°, and 20°. For the Mach 2 case, the 
freestream conditions were a Reynolds number (based 
on missile diameter) of 3.84 x 105, a static 
temperature of 166 K, and a static pressure of 
1.268 x 104 Pa. For the Mach 3 case, the freestream 
Reynolds number was 2.34 x 105, the static 
temperature was 107 K, and the static pressure was 
2.77 x 103 Pa. The model reference diameter (D) was 
30 mm. The tail-controlled, air-to-air missile 
(TCAAM) configuration, shown in Figure la, 
consisted of a 3-caliber tangent ogive on a 13-caliber 
cylindrical body. The four grid fins were located 
1.5 calibers (1.5D) from the rear of the missile. The 
grid fin, Figure lb, had a span of 0.75D, a height of 
0.333D, and a chord of 0.118D. The simulations 
were performed with the missile in the cruciform (+) 
configuration, and symmetry (x-z plane) was used so 
that only a half plane was modeled. The DREV wind 
tunnel data ranged from -12° to +12° angle of attack. 
The a = 20° angle of attack simulation was 
performed to compare with the previous grid fin CFD 
investigation. 14,15 

The commercial CFD code, FLUENT, Version 
5.3, was used for this investigation.16 The implicit, 
compressible (coupled), unstructured-grid solver was 
used. The three-dimensional, time-dependent 
Reynolds-averaged Navier-Stokes (RANS) equations 
are solved using the finite volume method: 

where W is the vector of conservative variables, and 
F and G are the inviscid and viscous flux vectors, 
respectively, defined as 

W = 

' p pv 0 
pu pvu + pi T* 
pv I F = - pvv + pj , G = T>< 
pw pvw+pk Tzi 

\pE\ pvE + p\ tx..v,.+q_ 

H is the vector of source terms, V is the cell volume, 
and A is the surface area of the cell face. The inviscid 
flux vector, F, is evaluated by a standard upwind 
flux-difference splitting. The Spalart-Allmaras17 one- 
equation   turbulence   model   was   used   for  these 

calculations. In FLUENT, the original version of the 
Spalart-Allmaras model is modified to allow the use 
of wall functions when the mesh resolution is not 
sufficiently fine to resolve the viscous-affected, near- 
wall region of the boundary layer. This capability 
was used in generating the mesh so that the 
computational requirements were reduced as much as 
possible. Second-order upwind discretization was 
used for the flow variables and the turbulent viscosity 
equation. 

The geometry and unstructured mesh were 
generated using the preprocessor GAMBIT, which is 
part of the FLUENT software suite. In generating the 
meshes, boundary layer mesh spacing was used near 
the missile body and fin surfaces. Advantage was 
taken of the wall function option of the solver in 
FLUENT, and the first point off the surface (cell 
center) was between 0.004 and 0.006 calibers from 
the surface. All mesh stretching was kept below 1.25. 
Hexahedral cells were used except for in a small 
region ahead of and partly over the first 0.1 calibers 
of the nose of the missile (less than 1% of the total 
length). The latter region was made up of 
tetrahedrons and pyramid transition elements. 
Figure 2 shows the mesh on the symmetry plane. The 
triangular surface mesh can be observed at the 
upstream end. The tetrahedral mesh was made to 
cover a small part of the missile nose only to allow a 
transition between the two types of meshes near the 
nose. Following the methodology established 
earlier,1415 a nonconformal mesh interface was used 
at 13 calibers from the missile nose. This reduced the 
size of the mesh by eliminating the need to carry the 
complex, dense mesh near the fins into the missile 
forebody region. A true hybrid mesh with 
quadrilateral or prism elements in a layer around the 
solid surfaces and tetrahedral elements in the 
freestream was not attempted because of the difficulty 
in generating this mesh around the fins. The total 
number of cells in this mesh was about 3.9 million, 
with 3.2 million in the fin region (13-16 calibers). 
The mesh in the fin region is shown in Figure 3. The 
number of cells across the front and rear of the grid 
fin web and frame surface was one or two due to 
difficulty in meshing this small (0.14 mm, or 0.005D) 
thickness. This dimension is the same order of 
magnitude as the first cell spacing off the surface. 

The base flow was not simulated in these 
calculations, so the mesh ended at the end of the 
missile. An outflow boundary condition was used 
downstream, a pressure inflow (with freestream 
conditions) boundary condition was used upstream, 
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and a far-field pressure (nonreflecting) boundary 
condition was used for the outer boundary. A nonslip 
wall boundary condition was used for all solid 
surfaces. The y+ value on the missile body was 
between 17 and 45 for the Mach 2 case, and about 7- 
30 for the Mach 3 case. The y+ value was between 17 
and 35 on the fin surfaces. The optimum y+ value for 
wall functions is about 30-60 to ensure that the first 
point is in the log layer region of the boundary layer, 
rather than in the viscous layer. The y+ values for the 
Mach 3 case are lower than optimum. It was not 
originally planned to perform the Mach 3 case in this 
study, so the same mesh used for the Mach 2 case was 
used. We believe that any inaccuracy in the 
turbulence model assumptions resulting from the 
lower than optimum y+ value will not have a large 
effect on the aerodynamic coefficients. 

and 14% at a = 10° for the Mach 3 calculations. The 
axial force coefficient results (Figure 5) show good 
agreement, with the difference between the calculated 
and measured values between 4% and 8% over the 
angle-of-attack range for both Mach numbers. The 
agreement of the pitching moment coefficient 
(Figure 6) is not as good, with a difference of about 
16-27% between the calculated and measured values 
over the angle of attack range and Mach numbers 
investigated. Good agreement was found for the 
computed location of the center of pressure, xcp, with 
a difference between 6% and 10%. The values at 
a = 0° were not included in the above difference 
calculations because C„ and Cm are near zero. 
Interestingly, the CFD captured the nonlinearity in the 
C„ and Cm curves at Mach 3 that are present in the 
wind tunnel data. 

The simulations were performed in parallel using 
six processors on a Silicon Graphics, Inc. (SGI) 
Origin 2000 with R12000 processors. The 
simulations were run with a CFL number between 2 
and 4, with the lower value used for the first 200 
iterations. The calculations took about 4-6 minutes 
per iteration using six processors. The aerodynamic 
coefficients converged in about 600-800 iterations, 
and it took about 1,200 iterations for the turbulent 
viscosity to converge, with a reduction in the scaled 
residual to about 5 x 10"5. 

Results and Discussion 

Aerodynamic Coefficients 

Using the FLUENT postprocessor, the viscous 
and pressure forces were integrated along the missile 
body and fin surfaces to calculate the aerodynamic 
coefficients. The normal force (C„), axial force (Cx), 
and pitching moment (Cm) coefficients are presented 
in missile-based coordinates, with the origin located 
at the nose. The jc-axis is aligned with the missile 
axis, and the z-axis is the vertical axis. The pitching 
moment is expressed about the nose of the missile. 
The reference area is the cross-sectional area of the 
missile base, and the reference length is the diameter 
of the missile. 

The calculated aerodynamic coefficients are 
compared to the DREV wind tunnel measurements7 in 
Figures 4-6 and Tables 1 and 2. The normal force 
coefficient results are shown in Figure 4. The 
difference between the calculated and measured 
values is 7.8% at a = 5° and 16% at a= 10° for the 
Mach 2 calculations. The difference is 15% at a = 5° 

Table 1. Calculated and Experimental Aerodynamic 
Coefficients and Center of Pressure at Mach 2. 

a Cn cm cx Xqj 

0 CFD 0.0001 0.0009 0.3993 9.00 

EXP -0.0215 0.2687 0.4234 12.5 

diff. - - -5.69% - 

5 CFD 0.6549 -6.3230 0.4096 9.65 

EXP 0.6078 -5.4667 0.4453 8.99 

diff. +7.75% -15.7% -8.02% +7.34% 

10 CFD 1.4407 -12.8200 0.4149 8.90 

EXP 1.2411 -10.1029 0.4340 8.14 

diff. +16.1% -26.9% -4.40% +9.33% 

Table 2. Calculated and Experimental Aerodynamic 
Coefficients and Center of Pressure at Mach 3. 

a Cn ^m Q %cp 

0 CFD -0.0005 0.0073 0.4127 14.6 

EXP -0.0112 0.0563 0.4448 5.03 

diff. - - -7.22% - 

5 CFD 0.5748 -4.6125 0.4236 8.02 

EXP 0.5015 -3.6615 0.4619 7.30 

diff. +14.6% -26.0% -8.29% +9.86% 

10 CFD 1.5453 -12.2338 0.4274 7.92 

EXP 1.3595 -10.1740 0.4568 7.48 

diff. +13.7 -20.2% -6.44% +5.88% 

The normal force coefficients on the individual 
grid fins are shown in Figure 7.     The fins are 
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numbered 1^, with Fin 1 in the 3 o'clock position 
and Fin 4 in the 12 o'clock position (if looking 
forward from the rear of the missile in the "+" 
configuration). In the simulations, Fin 1 and Fin 3 
are the same due to symmetry. The forces on the fins 
were not measured in the DREV wind tunnel 
experiment, so no validation data are available. In 
the previous investigation14,15 there was excellent 
agreement between the calculated and measured fin 
normal force. The results for the present simulation 
show the same characteristics. The largest normal 
force is provided by the horizontal fins, as expected. 
The windward fin (bottom, Fin 2) also provided 
substantial normal force, about 50% of the horizontal 
fins. At Mach 2, the leeward fin (top, Fin 4) provides 
a similar normal force as Fin 2 up to about a = 5°. 
Above 5°, the normal force on the leeward fin 
decreases and becomes negative. At Mach 3, the 
normal force on the leeward fin does not increase as 
a increases, but begins to decrease at about a = 5°, as 
in the Mach 2 case. As discussed by Simpson,3 the 
nonlinear shape of the normal force vs. a curve for 
the leeward fin is due to its location in the separated 
flow region. As shown later in plots of the flowfield, 
the local angle of attack varies over the leeward fin. 
Some parts are at an effective negative angle of 
attack, while other parts are at an effective positive 
angle of attack. 

The difference between the measured and 
calculated Cm was surprising. The previous study of 
the DERA 13-caliber generic missile demonstrated 
that the current meshing and solution methodology 
could give very good results.14'15 Figure 8 shows the 
results of those calculations, which were performed at 
Mach 2.5 at several angles of attack and were 
validated with DERA wind tunnel measurements. 
The aerodynamic coefficients of the missile were 
calculated to within 6-11% of the measured data, and 
the normal force on the grid fins was calculated to 
within 10%. The capturing of the nonlinear effect on 
the leeward fin indicated that the flow separation 
region was calculated with reasonable accuracy. 

Several potential explanations for the difference 
in the Cm are considered. One possibility is that the 
location of the separation on the leeside of the missile 
was not calculated correctly. To investigate this, 
several simulations of the TCAAM body with no fins 
were performed and compared against data from an 
earlier study.18 Experimental data was not available 
for the conditions used in our study, so the 
comparison was made at Mach 2.5 and a = 14°. 
Figure 9 shows the azimuthal pressure coefficient 

(Cp) distribution at four axial locations, x/d = 3.5, 6.5, 
7.5, and 9.5. The calculations were performed at the 
same Reynolds number, 1.23 x 106, as in the earlier 
study.18 The results at an x/d of 3.5 and 9.5 agree 
reasonably well. The results at an x/d of 6.5 and 7.5 
are not as good, but are consistent with the results of 
the CFD codes investigated in the previous study.18 

The previous study also found that even with some 
discrepancies in predicting the separation point, the 
aerodynamic force and moment predictions were 
accurate to within 5%. Similarly, the present study of 
the TCAAM body alone predicted the aerodynamic 
coefficients to within 3% and xcp to within less than 
1.5%. It is therefore unlikely that the large difference 
in Cm for the grid fin calculations are due to an 
inaccuracy in the prediction of the flow separation on 
the leeside of the missile. 

A second possible explanation could be an error 
in the calculation of the forces on the grid fins. Since 
there is no measured force data to validate against, it 
is impossible to be sure. However, there is some 
confidence in the fin normal force data since it was so 
accurately predicted in the study of the DERA 
generic missile,1415 and the correct trends were 
observed in the TCAAM calculation (Figure 7). 

Another possible explanation is an error in the 
wind tunnel data. In the DREV wind tunnel 
measurements, the model is swept from -12° to +12° 
angle of attack during the 6-s test run time.19 It was 
recently proposed20 that a dynamic effect due to grid 
fins may exist. This was considered a possible 
explanation for a sharp change in xcp in the low 
transonic range observed in aeroballistic range tests.9 

This effect was not previously observed in wind 
tunnel tests, which are relatively static compared to 
aeroballistic tests. If there is a dynamic effect due to 
grid fins, it may be possible that the sweep rate, 4 7s, 
in the DREV wind tunnel tests is fast enough to cause 
this effect. This is purely speculative at this time, and 
further investigation is warranted. Static wind tunnel 
tests at several angles of attack are planned at 
DREV.19 The model was also swept in wind tunnel 
measurements performed at DERA,3,4 but the sweep 
rate was not reported. It is expected that the sweep 
rate is lower than that in the DREV wind tunnel since 
it is a continuous run tunnel, as opposed to the blow- 
down tunnel at DREV.7 

Although grid fins have been investigated 
experimentally for over a decade, the CFD prediction 
of grid fin missile flows has only recently been 
undertaken.11"15 All the effects specific to these novel 
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control devices are not fully understood and further 
investigation, numerical and experimental, needs to 
be done. 

Grid Fin Flowfield 

Contour plots of Cp on the symmetry plane are 
shown for the Mach 2, a = 10° case in Figure 10. A 
strong oblique shock is emanating from the windward 
side of the nose, with a weaker shock coming off the 
leeward side. An expansion fan is emanating from 
the ogive-body interface, and a separated flow region 
on the leeward side begins at one-third of the body 
length from the nose. Figure 10b shows a close-up of 
the complex, three-dimensional shock structure in the 
fin region. Figures 11a and 1 lb show the Cp contours 
on the symmetry plane through the leeward and 
windward fins, respectively. On the top fin 
(Figure 11a), the top cell is nearly at zero angle of 
attack, with a shock wave on the top and bottom of 
the cell. The other cells are at an effective negative 
angle of attack, with a shock wave on the bottom of 
the cell and expansion over the top part of the cell. 
This illustrated the phenomenon discussed earlier and 
is due to the recirculating flow from the separation on 
the leeward side of the missile. The entire bottom fin 
(Figure 1 lb) is at an effective positive angle of attack. 

The flow around the missile is further illustrated 
in Figure 12, which shows pressure coefficient 
contours at several axial stations along the missile 
body. At 3 calibers, the ogive-body interface, the 
flow has not separated. At 8 calibers, the flow has 
separated and the two vortices on the leeward side of 
the body can be clearly seen. These vortices are well 
developed by 14 calibers, which is just ahead of the 
fins. At the base of the missile, 16 calibers, the effect 
of the interaction with the leeward fin is nearly 
complete. The effect of the shock interactions with 
the horizontal fins is also observed. 

Summary and Conclusions 

Calculations of the viscous flow over a tail- 
controlled missile with grid fins in the supersonic 
flow regime were made using CFD. The calculations 
were made at Mach 2 and 3 and several angles of 
attack. The results were validated by comparing the 
computed aerodynamic coefficients against wind 
tunnel experimental data. 

Good agreement was found between the computed 
and experimental axial force coefficient, with a 
difference of 4-8%. Reasonable agreement was 
found  for  the  normal   force  coefficient,   with  a 

difference of 8-16%. The agreement of the pitching 
moment coefficient was not as good, with a difference 
of 16-27% between the calculations and the 
experimental data. Good agreement was found for 
the location of the center of pressure, with a 
difference of 6-10%. 

The normal forces on the individual grid fins 
showed similar characteristics to those observed in a 
previous study.14,15 The normal force on the leeward 
fin decreased as the angle of attack increased above 
5° and subsequently went negative. This 
phenomenon was illustrated in Cp contours around the 
leeward grid fin, which showed that the effective 
angle of attack was negative on most of that fin. 

The reason for the discrepancy between the 
calculated and measured pitching moment coefficient 
is unknown. Possible explanations for inaccuracies in 
both the numerical and experimental data were put 
forward, but further investigation is needed. 
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• span:      0.75D 
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• chord:     0.118D 
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Figure 1. Tail-Controlled Missile (a) and Grid Fin (b). 
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Figure 2. Mesh on Symmetry Plane. 

Figure 3. Mesh in Fin Region. 
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Figure 4.   Comparison of CFD (Filled Circle) With DREV Experiment (Circle): Normal Force Coefficient at 
(a) Mach 2 and (b) Mach 3. 
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Figure 11. Pressure Coefficient Contours on Symmetry Plane Through (a) Fin 4 and (b) Fin 2 at a=10°, Mach 2. 
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Mach 3, cc= 10° Case. 
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